6.20 Assume that the initial energy stored in the inducPSPICE tors of Fig. P6.20 is zero. Find the equivalent inducmultisim tance with respect to the terminals a, b.

Figure P6. 20

Solution:

$$
\begin{array}{ll}
\mathrm{P} 6.20 & 30 \| 20=12 \mathrm{H} \\
& 80 \|(8+12)=16 \mathrm{H} \\
& 60 \|(14+16)=20 \mathrm{H} \\
& 15 \|(20+10)=20 \mathrm{H} \\
& L_{\mathrm{ab}}=5+10=15 \mathrm{H}
\end{array}
$$

6.21 Assume that the initial energy stored in the inductors of Fig. P6.21 is zero. Find the equivalent inductance with respect to the terminals a, b.

Figure P6.21

Solution:

$$
\text { P } 6.21 \quad 5 \|(12+8)=4 \mathrm{H}
$$

$$
4 \| 4=2 \mathrm{H}
$$

$$
15 \|(8+2)=6 \mathrm{H}
$$

$$
3 \| 6=2 \mathrm{H}
$$

$$
6+2=8 \mathrm{H}
$$

6.26 Find the equivalent capacitance with respect to the terminals a,b for the circuit shown in Fig. P6.26.

Figure P6.26

Solution:

P $6.26 \quad \frac{1}{C_{1}}=\frac{1}{48}+\frac{1}{16}=\frac{1}{12} ; \quad C_{1}=12 \mu \mathrm{~F}$
$C_{2}=3+12=15 \mu \mathrm{~F}$

$\frac{1}{C_{3}}=\frac{1}{30}+\frac{1}{15}=\frac{1}{10} ; \quad C_{3}=10 \mu \mathrm{~F}$
$C_{4}=10+10=20 \mu \mathrm{~F}$
$20 \mu \mathrm{~F}=\begin{gathered}- \\ \begin{array}{c}10 \mathrm{~V} \\ +\end{array} \\ \end{gathered}$
$\frac{1}{C_{5}}=\frac{1}{5}+\frac{1}{20}+\frac{1}{4}=\frac{1}{2} ; \quad C_{5}=2 \mu \mathrm{~F}$

Equivalent capacitance is $2 \mu \mathrm{~F}$ with an initial voltage drop of +25 V .
6.27 Find the equivalent capacitance with respect to the terminals a, b for the circuit shown in Fig. P6.27.

Figure P6.27

Solution:

P $6.27 \quad \frac{1}{4}+\frac{1}{6}=\frac{5}{12} \quad \therefore \quad C_{\text {eq }}=2.4 \mu \mathrm{~F}$

$$
\frac{1}{4}+\frac{1}{12}=\frac{4}{12} \quad \therefore \quad C_{\mathrm{eq}}=3 \mu \mathrm{~F}
$$

